Global convergence of Hager–Zhang type Riemannian conjugate gradient method

نویسندگان

چکیده

This paper presents the Hager–Zhang (HZ)-type Riemannian conjugate gradient method that uses exponential retraction. We also present global convergence analyses of our proposed under two kinds assumptions. Moreover, we numerically compare methods with existing by solving optimization problems on unit sphere. The numerical results show has much better performance than methods, i.e., FR, DY, PRP, and HS methods. In particular, they it higher including hybrid ones in computing stability number graphs problem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global convergence of a modified spectral FR conjugate gradient method

A modified spectral PRP conjugate gradient method is presented for solving unconstrained optimization problems. The constructed search direction is proved to be a sufficiently descent direction of the objective function. With an Armijo-type line search to determinate the step length, a new spectral PRP conjugate algorithm is developed. Under some mild conditions, the theory of global convergenc...

متن کامل

Global Convergence of a Modified Liu-storey Conjugate Gradient Method

In this paper, we make a modification to the LS conjugate gradient method and propose a descent LS method. The method can generates sufficient descent direction for the objective function. We prove that the method is globally convergent with an Armijo-type line search. Moreover, under mild conditions, we show that the method is globally convergent if the Armijo line search or the Wolfe line sea...

متن کامل

Global Convergence of Conjugate Gradient Methods without Line Search

Global convergence results are derived for well-known conjugate gradient methods in which the line search step is replaced by a step whose length is determined by a formula. The results include the following cases: 1. The Fletcher-Reeves method, the Hestenes-Stiefel method, and the Dai-Yuan method applied to a strongly convex LC objective function; 2. The Polak-Ribière method and the Conjugate ...

متن کامل

Global Convergence Properties of Conjugate Gradient Methods for Optimization

This paper explores the convergence of nonlinear conjugate gradient methods without restarts, and with practical line searches. The analysis covers two classes of methods that are globally convergent on smooth, nonconvex functions. Some properties of the Fletcher-Reeves method play an important role in the first family, whereas the second family shares an important property with the Polak-Ribir...

متن کامل

Global convergence of two spectral conjugate gradient methods

Two new nonlinear spectral conjugate gradient methods for solving unconstrained optimization problems are proposed. One is based on the Hestenes and Stiefel (HS) method and the spectral conjugate gradient method. The other is based on a mixed spectral HS-CD conjugate gradient method, which combines the advantages of the spectral conjugate gradient method, the HS method, and the CD method. The d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2023

ISSN: ['1873-5649', '0096-3003']

DOI: https://doi.org/10.1016/j.amc.2022.127685